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Nonlinear Gauge Theory of Poincar~ Gravity 

Shao Changgui 1'2 and H. Dehnen 2 
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A Poincar6 affine frame bundle P(M) and its associated bundle ~ are established. 
Using the connection theory of  fiber bundles, nonlinear connections on the bundle 
/~ are introduced as nonlinear gauge fields. An action and two sets of gauge field 
equations are prcsented. 

1. FIBER B U N D L E  D E S C R I P T I O N  

In this paper the global Poincar6 invariance of space-time is extended 
to a local Poincar6 invariance; and the space-time obtained is denoted by 
M. It is known that the proper Poincar~ group IS0(3, 1) is the semidirect 
product IS0(3, 1) = T@ S0(3, 1) of the translation group T and the proper 
Lorentz group S0(3, 1), and 

iso(3, l) 
S0(3, 1) 

- M' (Minkowski space) 

Moreover the Lie algebra iso(3, 1) is the semidirect sum iso(3, 1)= 
t(+ so(3, 1) of the Lie algebras t and so(3, 1). We know that VgelSO(3, 1), 
g may be written in the form g =  e ~p e m where ~P= ~iPi, eCPs T, HI= HUIu, 
emeSO(3, 1), the P/-are generators of the group T, and the I o. are generators 
of the group S0(3, 1). The Latin indices i, j, k take the values 0, 1, 2, 3, by 
convention. It may be considered that the group T is identical to its Lie 
algebra t, and is a Minkowski space: 

T= t=M' 
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We also have the mappings 

and 

exp 

ee '~--', ~ (1) 
In 

exp 

T*----~, M' (2) 
In 

Here ~eM',  er and T is the multiplicative group obtained from A~' 
through the exponential mapping. Since Vg~ISO(3, 1), g = e  ~p e m is valid, 
here (~ ,  H ~ are canonical coordinates of g, i.e., Vg = e r emeISO(3,  1), we 
have e r e m ~ ( ~, H ~) e iso(3, 1). Similarly, Veeee T, its canonical coordi- 
nates in M' are ~s. 

Now we begin to construct an exponent bundle ft,= E(M, T, ISO(3, 1)). 
Let g = e r e m be an arbitrary element of ISO(3, 1), and let r = e n P ( ~  e ~ ~ T) 
be an arbitrary element of T. Then IS0(3 ,  1) acts on T from the left by 

gr = e r e m e "e = e "'e e HI (3) 

where 

e ' e  ~-~ e "'e, r/ '= r/'(r/, g) (4) 

is a realization o f lSO(3 ,  1) on T, and 

q'= rl'(q , g) = ~ + Ad(em) r/ 

is a mapping determined by the combination law of group ISO(3, 1). Here 
Ad(e m) is an adjoint representation of S0(3,  1). As the structure group 
IS0(3 ,  1) is localized, V X e M ,  the set of exponent group elements that take 
values at point X, is denoted by ~ .  Then Tx is a fiber over point X. It 
is easy to see that Tx is isomorphic to T; we denote the isomorphism by 
~ ~ T. Taking the un ion /~=  Ux~M Tx of Tx at all X s M ,  then we obtain 
the M-base, f-fiber, ISO(3, 1)-structure group exponent bundle /2= 
E(M, T, IS0(3 ,  1)). If  e" is an element of T, then every element e;e ~?x will 
give a mapping ~: T ~  ~ ,  e" ~ e ~. If we denote ~ by e C in T~, then the action 
of the group IS0(3 ,  1) on E can be defined as g~= ~(ge "p) =e  (e em~ --, e r 
where g = e ~p eme IS0(3 ,  1), ge ~ = e "'p e m ~ e"'e T, and ( = ~" + r/'. We have, 
V X s M ,  a bundle projection rc of E on M, which maps point 6 = e;e ~ onto 
point X, i.e., lr(~) =X. The cross section of bundle/~ will be a differential 
distribution of the exponent group element, and may be obtained by the 
exponent mapping from the translation group T ( X ) = M ' ( X ) .  We have 
~7--~ M |  ~', and dim ET= dim M + d i m  T = 4 + 4 = 8 .  

We can also construct an associated bundle E=~ ' (M,  M', ISO(3, 1)) 
corresponding to E, for which M is base, the tangent Minkowski space M' 
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of M is fiber, ISO(3, 1) is structure group, and a principal bundle P(M) = 
P(M, ISO(3, 1)) associated by /~  may be established also. Due to (1) and 
(2), some one-to-one correspondences between fiber T and fiber M' can be 
established. The mapping 

g r/' ~ rl', = 0'(77, g) = ~ + Ad(em)r/ (5) 

is a realization of group ISO(3, 1) on M'. If XeM, the fiber Mx over the 
In r 

point X may be obtained from iP~ by the mapping T~--~ Mx. Thus, the 
mapping maps e"e Tx onto 7/e M ' .  The set thus obtained is a fiber M"  over 
X. Takin.g the union/~= Ux~M M" at all X of M, we may construct a vector 
bundle E =  E( M, M', ISO( 3, 1)). 

Of  course, the bundle/~ may be used to describe the gauge theory of 
gravitation (Changgui and Bangqing, 1986), and thus to construct a non- 
linear Poincar6 gauge gravity (PG). Relation (5) is a transformation of the 
vector under a transformation of  the local affine frame {p, ei}. Since the 
group ISO(3, 1) is free, we can find a local affine frame transformation 
associated with (5) in M "  

{p, el} g {p', e;} 

Here es ~-, e~(ei, g) is a Lorentz rotation, and pg p'= p'(p, g) is a translation. 
Thus, under the free action of the group ISO(3, 1), VX~M, ~ a series of 

local affine frame {Z, Xi}x [denoted by fix(M)], and there is an isomorphism 
Px(M) ~ISO(3, 1). The union P(M)= U~M Px(M) of Px(M) at all points 
X of M will be the M-base, ISO(3, 1)-structure group, Poincar6 affine frame 
bundle P(M)=P(M, ISO(3, 1)) obtained. For an element r/eM', there is 
an element in M~< which defines a mapping ~: M' ~ M ' ,  7 / ~  ~, i.e., fir/= 
~. At the same time, for a local affine frame {p, ei} in M', each local affine 
frame {,~, X,.} of M" can also give a mapping ~' M' ~ M"  and ~{p, e;} = 
{Z, X~}. On the fiber ~r-I(x) of principal bundle P(M), let ~U= {)~, Xi} be 
a point of Iv-~(X); then the right action of ISO(3, 1) on P(M) may be 
defined as ~ g  = ~ ' ,  where geISO(3, 1), ~U'= {~.', X;}. For the associated 
bundle/~, the left action of ISO(3, 1) on its fiber M', using (3) and (4), may 
be defined as 

(g, tl)elSO(3, 1) |  ~--~grl=rl' ~M' 

The right action of the group IS0(3, 1) on the product manifold P| is 
given by 

,7) ,L ( pg, g-lrl) 
where g6ISO(3, 1), (U,  r/), and C/fg, g-~rl)~P| The quotient space 
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P| 1) of P| under group IS0(3, 1) is the vector bundle/~. 
Now, V ~ P ( M )  and r/EM', we use ~ q  to denote the image of natural 
projection P Q M ' ~ E ,  (~,  q ) ~ q ;  then there exists a mapping 
P| ~ M' which induces a projection rc~ from/2 onto M. Now, VXsM, 
the set rc~ '(X) is a fiber M" over X. Any point ~ ( r c (U  ) =X)  in P(M) may 
be considered as an isomorphism from M' into Jr~'(X). And VrI~M', q 
determines a mapping from P(M) into ~; VXeM, the bundle projection 
rot from/2 onto M maps the point fi = ( onto X, i.e., zr~(fi) =X. The differen- 
tial distribution of the translation group T(X) on M is a cross section on 
the bundle ~. And the local affine frame {)~(X),X~(X)} on M is a cross 
section on P(M). In the bundle P(M) it gives a submanifold which is 
diffeomorphic to M. The projection Tc from P(M) onto M maps the point 
{/~,X~} of the fiber rc-'(X) onto the point X. It is easy to see that 
P(M)~M| 1) and dim P(M)= 14. Apparently, the vector bundle 
/~=/2(M, M', ISO(3, 1)) is a bundle associated with the Poincar6 affine 
frame bundle P(M) = P(M, IS0(3, 1)). 

It follows from the above that when we extend the global Poincar6 
invariance of space-time to the local Poincar~ invariance, the principal 
bundle P(M) and its associated bundle/~ can be established, and P(M), 
are different from the usual bundle P(M), E (Kobayashi and Nomizu, 1963). 
The bundle P(M) and E may be used to describe a nonlinear action mechan- 
ism of the gauge group IS0(3, 1). 

2. NONLINEAR GAUGE FIELDS 

The connection on the usual Poincar~ bundle P(M) is given (Changgui 
and Bangqing, 1986) by 

1 D ~ / l r  _t_ i W~J~ = ~,-,~lij - V, Ti (6) 

where {J~} = { T~., Iu} are translation and Lorentz rotation generators of the 
group IS0(3, 1), and V~ (Lorentz vierbein fields) and B~ are the correspond- 
ing gauge potentials of the above generators. Under the transformation of 
the element geISO(3, 1), the transformation formula of the above connec- 
tion is 

WtlJa- '~ _ g( Wu~ j~)g-1 + g~g-  i 

Using the connection given by (6), a nonlinear connection A~ and K~ can 
be defined on the exponent bundle/~ as (Coleman et al., 1963; Callan et al., 
1969) 

a I / j  i G~J~ = ~_Auli/+ KuTi 

=e-r + �89 B~Iij+ Vi, Ti) e ~P (7) 
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G~ can give a connection on the bundle/~, and then may be used as the 
gauge fields of  the PG. Now let e Cp = t, e m = h. Then the transformation of  
A~ and K~ under gt = t'h' [geISO(3,  1)] may be written as 

�89189 +h'duh '-~ 

r t i i - 1  K~ = h (K~ Ti)h (8) 

From (7) we have 

A O" - -  R i J  u - =u (9) 

_- + + �89 ( l o )  

Here C}k,t = qkfi}--(i +-+j). From (7) and (8), the transformation formulas 
of the nonlinear gauge fields A~, K~ are different from the usual Yang-Mills 
gauge field (Changgui and Bangqing, 1986) B ~ V~. Apparently, if ~=0,  
the values of the connections (9), (10) are the same as those of the connec- 
tions on the principal bundle P ( M ) .  Since the action of the group ISO(3,  1) 
on/~  is arbitrary, it is known that the nonlinear translation connection K~ 
also determines a nonlinear translation connection on the principal bundle 
/ ' (M).  K~ may be considered as nonlinear vierbein fields, and 
K~ + G[ (4, R). 

By using nonlinear connections A~ and K~, one can define the covariant 
derivative as 

D u = 0~ - ! ~ r  2 Z a u l  0" 

and we may obtain the curvature tensor 

F p v 4 ~ k l ,  m n Z l , u  x'a v 

i j  A i  ~ k j  = OuAv + (i +*j)  z'a la k'g~t v - -  

Here 

c i J k l . m n  __  i " - rlk.5,Y,~+ n,,~(5~gfin-- (i ++j) 

We can also define another covariant derivative 

D . = O . - G ~ J . = O ~  I .o . .  v i .1 .  - -  _ ~ z a p l / j - -  l ~ p  i i 

It is easy to prove that 

_ F u v j = ! ~ - ~ J  r _ ~ i  ,7, 
2 r p v l i j  l l u v l i  

Here the curvature tensor is 

A a  - -  U a 
I"~ b c U , u t J  v 
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c ^0" ~ i  ~ a  where [J,,  Jb] = Cb~J~. And for the components F,~, Fu~ of Fuv, we have 

~ i j  __ iz, i j  __ ~ DO'. j_  l~i  l ~ k j _ _  

~ i  i i F ~  = D u K e -  D~K u 

= T~v+ 2Isk(B,,D , 
I m n  i k  i k  i k  + ~d~I.~.Bv B~ +B~ .  + B ~ G  - (~ ,--, v)]( 

_ t ~ = i + B'~ ~ -  (p ~ v) is the torsion tensor of  the Here T ~ - D ~ V v - D ~ V ~  V~lu 
space-time manifold M under the frame of  the usual Poincar6 bundle P(M).  
We call ^g F ,~  the torsion tensor of  M under the frame of  the nonlinear 
Poincar6 bundle P (M) .  Now we see that if the connections we defined on the 
bundle /3(M) or/~ are considered as the gauge potentials, we can establish a 
nonlinear theory of  PG, and the potentials and strengths in the theory are 
different from those in the usual linear theory. 

3. ACTION, GAUGE FIELD EQUATIONS 

The curvature scalar of  the bundle space/~ is invariant under the gauge 
group IS0(3,  1), so it may be taken as an action. Let ZA = {/),, T,} be a 
base in /~. Then, using the metric of the space-time manifold 
g,u v i j = K,Kvqij and the metric r/u of the fiber of/~, we can define a metric of 

as 

Here ~ v = ( b u , / 5 ~ ) = ~ , ~ u = ( T ~ , T ) ) = r h  j, and (~u ,=~ ,=O.  The 
connection f'~A on /~  may be given as 

= f % 2 .  

and the curvature on E" is 

FA~FBD -- (A +--' B) - C A B F E O  

Then the curvature scalar of /~  may be obtained as 

I~= R + RM,- �88 �88 2 

Here k is the curvature scalar of M, RM, is the curvature scalar of  M' (its 
value is zero), - �88 2= - �88 is the kinetic energy term corresponding 
to the potential A~, and - �88 _ �88 is the kinetic energy term corre- 
sponding to potential K~. One may choose R as the Lagrangian of  the 



Nonlinear Gauge Theory of Poincar~ Gravity 1495 

nonlinear gauge theory of gravitation, so the action has the form 

~ =  C , , ~ m + _ ~  P F 2  ~ 2  K d 4 x  ( 1 1 )  

4 

where Lfm = LPm(Vt, ~tlu ) is a matter field, K=det(K~)  = (_if)l/2, C= 81rk (k 
is Newton's gravitational constant), and p, p' are two gauge gravitational 
constants to be determined. 

Taking A~ and K~ as dynamic variables, through variation of (11), we 
can obtain the following two sets of gauge field equations of gravity: 

~ i  __ 2KuRli ~ = ~ i  i t i  " " v i  - C T ~  + p t ~  + p r~ - ( E l  v - E'V~ + E ~ )Iv 

- 2Tvz  ~ (Eu `v - EiVu + E V j )  (12) 

CS +M = -Fo.llv (13) 

Here 

*i ,uv i +  ! ^ ^ ~ v  i 2t  u = - t ~ ( F ~ F  ) K  4t~(Fz~F )K~  

is the energy-momentum tensor of the gauge potential A~ = B~, 

is the energy-momentum tensor of the gauge potential K~, 

1 c~ (s S~- 
K c~A~ 

is the spin current of the matter field gt, 

( e = l - p ' )  - -  l jkl~. ~1~. i - -  1' kil~. )~,kj 

and FI denotes the twofold covariant derivative in the natural and moving 
Lorentz frame; 7"~ is the mass tensor in the moving frame, 
E" v i = T" v i + 8mTv - 6~ T" is the modified torsion tensor; and Tz = Tu vv. 

When the space-time manifold M is a Riemann space (torsion-free), 
then equations (12) and (13) become 

and 

i ^ 
- }) (14) 

CS~ = - pF~l~ ({ } ) (15) 
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I f  in the Riemann space M we ignore the contributions of  gauge actions, 
equation (15) vanishes and equation (14) degenerates into the Einstein 
equation 

l i ^ ~ i  k~({ } ) - ~KuR({  } ) = - CTIt (16) 

I f  M is a R iemann-Car tan  space and we do not consider the contribu- 
tions of  gauge actions, equations (12) and (13) become 

Rilt - -  I ~ K i t l ~  = i ^  - C T  it - ( Ei t iV - E iv ^ i It _F E v it i M v -  2 T  )[ v.~ "~ ( g i t  i v -  g iv It ~- E it ) vi 

+ = o 

H e r e K / ~ = P ~ - ^  ~ k ^~ k u F ~ K  ~Ki -  F , i K  ~K} (contortion). 
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